Уроки 54-55. Системы тригонометрических уравнений (факультативное занятие)
Цель: рассмотреть наиболее типичные системы тригонометрических уравнений и способы их решения.
I. Сообщение темы и цели уроков
II. Повторение и закрепление пройденного материала
1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).
2. Контроль усвоения материала (самостоятельная работа).
Вариант 1
Решите неравенство:
Вариант 2
Решите неравенство:
III. Изучение нового материала
На экзаменах системы тригонометрических уравнений встречаются гораздо реже тригонометрических уравнений и неравенств. Четкой классификации систем тригонометрических уравнений не существует. Поэтому условно разобьем их на группы и рассмотрим способы решения этих задач.
1. Простейшие системы уравнений
К ним отнесем системы, в которых или одно из уравнений является линейным, или уравнения системы могут быть решены независимо друг от друга.
Пример 1
Решим систему уравнений
Так как первое уравнение является линейным, то выразим из него переменную и подставим во второе уравнение: Используем формулу приведения и основное тригонометрическое тождество. Получим уравнение или Введем новую переменную t = sin у. Имеем квадратное уравнение 3t2 - 7t + 2 = 0, корни которого t1 = 1/3 и t2 = 2 (не подходит, так как sin у ≤ 1). Вернемся к старой неизвестной и получим уравнение sin y = 1/3, решение которого Теперь легко найти неизвестную: Итак, система уравнений имеет решения где n ∈ Z.
Пример 2
Решим систему уравнений
Уравнения системы независимы. Поэтому можно записать решения каждого уравнения. Получим: Почленно сложим и вычтем уравнения этой системы линейных уравнений и найдем: откуда
Обратим внимание на то, что в силу независимости уравнений при нахождении х - у и х + у должны быть указаны разные целые числа n и k. Если бы вместо k было также поставлено n, то решения имели бы вид: При этом было бы потеряно бесконечное множество решений и, кроме того, возникла бы связь между переменными xи у: х = 3у (чего нет на самом деле). Например, легко проверить, что данная система имеет решение х = 5π и у = п (в соответствии с полученными формулами), которое при k= n найти невозможно. Поэтому будьте внимательнее.
2. Системы вида
Такие системы приводятся к простейшим при сложении и вычитании уравнений. При этом получим системы или Отметим очевидное ограничение: и Само же решение подобных систем сложностей не представляет.
Пример 3
Решим систему уравнений
Преобразуем сначала второе уравнение системы, используя равенство Получим: Подставим в числитель этой дроби первое уравнение: и выразим Теперь имеем систему уравнений Сложим и вычтем эти уравнения. Имеем: или Запишем решения этой простейшей системы: Складывая и вычитая эти линейные уравнения, находим:
3. Системы вида
Такие системы можно рассматривать как простейшие и решать их соответствующим образом. Однако есть и другой способ решения: преобразовать сумму тригонометрических функций в произведение и использовать оставшееся уравнение.
Пример 4
Решим систему уравнений
Сначала преобразуем первое уравнение, используя формулу для суммы синусов углов. Получим: Используя второе уравнение, имеем: откуда Выпишем решения этого уравнения: С учетом второго уравнения данной системы получаем систему линейных уравнений Из этой системы находим Такие решения удобно записать в более рациональном виде. Для верхних знаков имеем: для нижних знаков -
4. Системы вида
Прежде всего необходимо получить уравнение, содержащее только одну неизвестную. Для этого, например, выразим из одного уравнения sin у, из другого - cos у. Возведем в квадрат эти соотношения и сложим. Тогда получается тригонометрическое уравнение, содержащее неизвестную х. Решаем такое уравнение. Затем, используя любое уравнение данной системы, получаем уравнение для нахождения неизвестной у.
Пример 5
Решим систему уравнений
Запишем систему в виде Возведем в квадрат каждое уравнение системы и получим: Сложим уравнения этой системы: или Используя основное тригонометрическое тождество, запишем уравнение в виде или Решения этого уравнения cos x = 1/2 (тогда ) и cos x = 1/4 (откуда ), где n, k ∈ Z. Учитывая связь между неизвестными cos y = 1 – 3 cos x, получим: для cos x = 1/2 cos y = -1/2; дляcos x = 1/4 cos y = 1/4. Необходимо помнить, что при решении системы уравнений проводилось возведение в квадрат и эта операция могла привести к появлению посторонних корней. Поэтому надо учесть первое уравнение данной системы, из которого следует, что величины sin x и sin у должны быть одного знака.
С учетом этого получим решения данной системы уравнений и где n, m, k, l ∈ Z. При этом для неизвестных х и у одновременно выбирают или верхние, или нижние знаки.
В частном случае система может быть решена преобразованием суммы (или разности) тригонометрических функций в произведение и последующим почленным делением уравнений друг на друга.
Пример 6
Решим систему уравнений
В каждом уравнении преобразуем сумму и разность функций в произведение и разделим каждое уравнение на 2. Получим: Так как ни один множитель в левых частях уравнений не равен нулю, то почленно разделим уравнения друг на друга (например, второе на первое). Получим: откуда Подставим найденное значение например, в первое уравнение: Учтем, что Тогда откуда
Получили систему линейных уравнений Складывая и вычитая уравнения этой системы, найдем и где n,k ∈ Z.
5. Системы, решаемые с помощью замены неизвестных
Если система содержит только две тригонометрические функции или приводится к такому виду, то удобно использовать замену неизвестных.
Пример 7
Решим систему уравнений
Так как в данную систему входят только две тригонометрические функции, то введем новые переменные а = tg х и b = sin у. Получим систему алгебраических уравнений Из первого уравнения выразим а = b + 3 и подставим во второе: или Корни этого квадратного уравнения b1 = 1 и b2= -4. Соответствующие значения а1 = 4 и а2 = -1. Вернемся к старым неизвестным. Получим две системы простейших тригонометрических уравнений:
а) ее решение где n, k ∈ Z.
б) решений не имеет, так как sin у ≥ -1.
Пример 8
Решим систему уравнений
Преобразуем второе уравнение системы так, чтобы оно содержало только функции sinх и cos у. Для этого используем формулы понижения степени. Получим: (откуда ) и (тогда ). Второе уравнение системы имеет вид: или Получили систему тригонометрических уравнений Введем новые переменные a = sin х и b= cos у. Имеем симметричную систему уравнений единственное решение которой a = b = 1/2. Вернемся к старым неизвестным и получим простейшую систему тригонометрических уравнений решение которой где n, k ∈ Z.
6. Системы, для которых важны особенности уравнений
Практически при решении любой системы уравнений используются те или иные ее особенности. В частности, один из наиболее общих приемов решения системы - тождественные преобразования, позволяющие получить уравнение, содержащее только одну неизвестную. Выбор преобразований, конечно, определяется спецификой уравнений системы.
Пример 9
Решим систему
Обратим внимание на левые части уравнений, например на Используя формулы приведения, сделаем из нее функцию с аргументом π/4 + х. Получим: Тогда система уравнений имеет вид: Чтобы исключить переменную х, почленно умножим уравнения и получим: или 1 = sin3 2у, откуда sin 2у = 1. Находим и Удобно отдельно рассмотреть случаи четных и нечетных значений n. Для четных n (n = 2k, где k ∈ Z) Тогда из первого уравнения данной системы получим: где m ∈ Z. Для нечетных Тогда из первого уравнения имеем: Итак, данная система имеет решения
Как и в случае уравнений, достаточно часто встречаются системы уравнений, в которых существенную роль играет ограниченность функций синуса и косинуса.
Пример 10
Решим систему уравнений
Прежде всего преобразуем первое уравнение системы: или или или или Учитывая ограниченность функции синуса, видим, что левая часть уравнения не меньше 2, а правая часть не больше 2. Поэтому такое уравнение равносильно условиям sin2 2х = 1 и sin2 у = 1.
Второе уравнение системы запишем в виде sin2 у = 1 - cos2 z или sin2 у = sin2 z, и тогда sin2 z = 1. Получили систему простейших тригонометрических уравнений Используя формулу понижения степени, запишем систему в виде или тогда
Разумеется, при решении других систем тригонометрических уравнений также необходимо обращать внимание на особенности этих уравнений.
Будь-те первым, поделитесь мнением с остальными.