

Тепловые машины

Подготовила: учитель математики и физики Узунова Елена Николаевна

Содержание

- Первый закон термодинамики.
- Работа газа и пара.
- Необратимость тепловых процессов. Второй закон термодинамики.
- Роль термодинамики в современной физике.
- Тепловые двигатели.
- КПД теплового двигателя.
- Пути совершенствования тепловых двигателей.
- ЗАДАЧИ
- Контрольный тест

1 закон термодинамики

Закон сохранения и превращения энергии при тепловых процессах носит название Первого закона термодинамики:

Количество теплоты, переданное системе, идет на изменение её внутренней энергии и на совершение системой работы над внешними телами

 $Q = \Delta U + A$

Работа газа при расширении

http://files.schoolcollection.edu.ru/dlrstore/669b7980-e921-11dc-95ff-0800200c9a66/2_8.swf

Применение 1 закона термодинамики к изопроцессам

Изопроцесс , Постоянная величина	Математичес кая запись закона	Графики изопроцессов			Первый закон термодинамики $\Delta U = A + Q$ или $Q = \Delta U + A'$
Изо- термический T = const					T- const, ∆T=0, значит и ∆U=0, тогда Q = A' Газ совершает работу за счёт переданного ему количества теплоты
Изо- барный p = const	$p \cdot V = const$ $\frac{V}{T} = const$	$P \xrightarrow{T_i \to T_i}$ $P \xrightarrow{T_i}$ $P \xrightarrow{P_i}$		$ \begin{array}{c c} P & \downarrow \\ \hline T_1 & T_2 & T \end{array} $	температура увеличивается ∆T>0, внутренняя энергия увеличивается ∆U>0 Q = ∆U + A* Газ совершает работу при постоянном давлении и изменяет свою внутреннюю энергию
Изо- хорный V = const	$\frac{T}{T} = const$ $\frac{p}{T} = const$	$P \bigwedge_{V} V_{1}$	V V_2 V_3 V_4 V_4	P T P T	Газ нагревают Q>0, внутренняя энергия увеличивается ∆U>0, но ∆V=0 (объём не изменяется) и значит A=0 ∆U = Q Количество теплоты, подводимое газу, идёт на изменение внутренней энергии
Адиабатный Q = 0					Q=0 Система не обменивается теплом с окружающей средой $\Delta \mathbf{U} = \mathbf{A}$ Изменение внутренней энергии происходит за счёт совершения работы

Второй закон термодинамики

Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе.

Невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Примеры необратимых процессов

- Передача тепла от более нагретого тела к менее нагретому.
- Колебания маятника.
- Старение организмов.

ТЕПЛОВЫЕ ДВИГАТЕЛИ

Развитие техники зависит от умения использовать громадные запасы внутренней энергии. Использовать эту энергию- это значит совершать за счет нее полезную работу. Рассмотрим источники, которые совершают работу за счет внутренней энергии.

Машины, преобразующие внутреннюю энергию топлива в механическую, называются тепловыми двигателями.

Транспортные средства с тепловыми двигателями

Пароход (1807)

Паровоз (1825)

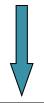
Автомобиль (1885)

Подводная лодка (1897)

Самолёт (1903)

Вертолёт (1907)

Тепловоз (1950)

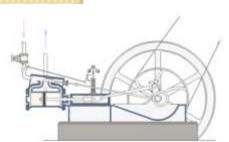


Ракета (1961)

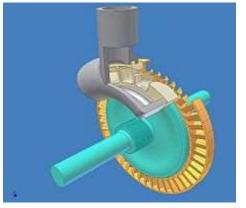
Атомная подводная лодка (1954)

Тепловые двигатели

ДВС



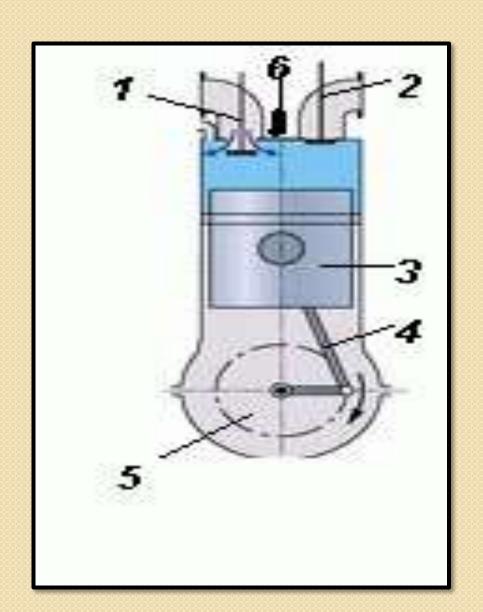
Газовая и паровая турбина



Реактивный двигатель

ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ.

Двигатель внутреннего сгорания — очень распространенный вид теплового двигателя. Топливо в нём сгорает прямо в цилиндре, внутри самого двигателя. Отсюда и происходит название этого двигателя.

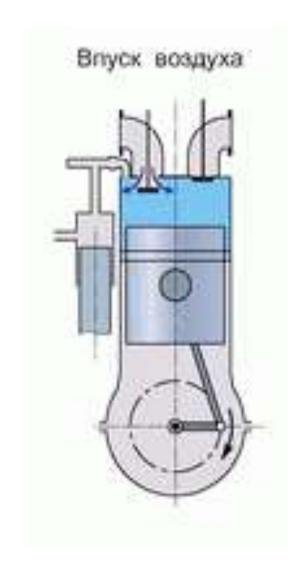

Двигатели внутреннего сгорания работают на жидком топливе (бензин, керосин, нефть) или на

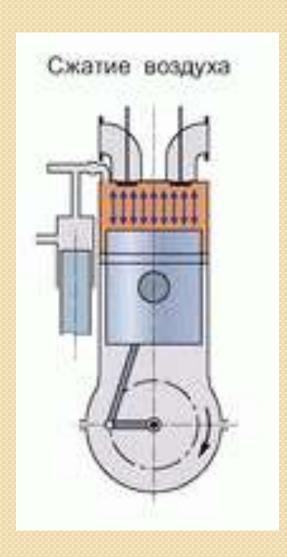
горючем газе.

Применение двигателей внутреннего сгорания чрезвычайно разнообразно. Они приводят в движение самолёты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

СТРОЕНИЕ ДВС

- 1. впускной клапан.
- 2. выпускной клапан.
- 3. поршень.
- 4. шатун.
- 5. коленчатый вал.
- 6. свеча.




цикл двс

Один рабочий цикл в двигателе происходит за 4 такта (хода) поршня. Поэтому такие двигатели называют четырёхтактными. Один ход поршня совершается за полоборота коленчатого вала. Цикл двигателя состоит из следующих четырёх процессов (тактов): впуска, сжатия, рабочего хода, выпуска.

Первый такт ДВС

В начале первого такта при повороте вала двигателя поршень движется вниз, объём над поршнем увеличивается. Вследствие этого в цилиндре создаётся разрежение. В это время открывается впускной клапан и в цилиндр входит горючая смесь. К концу первого такта цилиндр заполняется горючей смесью, а впускной клапан закрывается.

ВТОРОЙ ТАКТ

Во втором такте при повороте вала поршень движется вверх и сжимает горючую смесь. В конце второго такта, когда поршень дойдёт до крайнего верхнего положения, сжатая горючая смесь воспламеняется (от электрической искры) и быстро сгорает.